Theoretical Chemistry

Marek Kręglewski Wydział Chemii UAM

Course content

- I. Experimental background of quantum mechanics
- II. Observables and operators
- III. Models in quantum chemistry
- IV. Hydrogen atom and orbitals
- V. Multi-electron atom, spin and Pauli Exclusion Principle
- VI. Molecule H_{2}^{+}
- VII. Two-atomic molecules
- VIII. Ab initio calculation
- IX. Vibrations of molecules
- X. Rotations of molecules

Literature

- 1) Peter Atkins & Julio de Paula, Atkin's Physical Chemistry (Part2), Oxford University Press 2014
- 2) Andrew R.Leach, Molecular Modelling Principles and Applications, Pearson Education Limited 2001
- 3) Lucjan Piela, Idee chemii kwantowej, PWN, Warszawa 2001
- 4) Włodzimierz Kołos, Chemia kwantowa, PWN, Warszawa 1991.

Black body emission spectrum

k = 1,380662·10⁻²³ J K⁻¹

Photoelectric effect

The Lenard laws (1899)

1) The number of emitted electrons is proportional to the intensity of light

2) The maximum velocity of electrons depends on wavelength not on intensity of light

Einstein formula (1905, Nobel prize in 1921):

$$hv = \frac{1}{2} m_e v^2 + W$$

"In fact, it seems to me that the observations on "black-body radiation", photoluminescence, the production of cathode rays by ultraviolet light and other phenomena involving the emission or conversion of light can be better understood on the assumption that the energy of light is distributed discontinuously in space. According to the assumption considered here, when a light ray starting from a point is propagated, the energy is not continuously distributed over an ever increasing volume, but it consists of a finite number of energy quanta, localised in space, which move without being divided and which can be absorbed or emitted only as a whole."

Albert Einstein, 1905

Photoelectric effect

Es scheint mir nun in der Tat, daß die Beobachtungen über die "schwarze Strahlung", Photolumineszenz, die Erzeugung von Kathodenstrahlen durch ultraviolettes Licht und andere die Erzeugung bez. Verwandlung des Lichtes betreffende Erscheinungsgruppen besser verständlich erscheinen unter der Annahme, daß die Energie des Lichtes diskontinuierlich im Raume verteilt sei. Nach der hier ins Auge zu fassenden Annahme ist bei Ausbreitung eines von einem Punkte ausgehenden Lichtstrahles die Energie nicht kontinuierlich auf größer und größer werden der Räume verteilt, sondern es besteht dieselbe aus einer endlichen Zahl von in Raumpunkten lokalisierten Energiequanten, welche sich bewegen, ohne sich zu teilen und nur als Ganze absorbiert und erzeugt werden können.

"Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Albert Einstein, Annalen der Physik. Vol. 322 No. 6 (1905): 132–148.

Spectrum of the hydrogen atom

Hydrogen Absorption Spectrum

de Broglie hypothesis (1923) $p = \frac{h}{\lambda}$ $\lambda = \frac{h}{p}$

Why is the duality not observed in classical mechanics?

m = 2gv = 1000 m/sp = 2 kg m /sh = $6,62 \cdot 10^{-34}$ J sc = $2,99792458 \cdot 10^8$ m /s $\lambda = (6,62 \cdot 10^{-34} / 2)$ m = $3,31 \cdot 10^{-25}$ nm

Wave-particle duality: a key concept of quantum mechanics

Uncertainty principle

$$\Delta p_{x} \bullet \Delta x \geq \frac{\hbar}{2}$$
$$\Delta E \bullet \Delta t \geq \hbar$$

1923 - Werner Heisenberg

Exact formula:

$$\langle \Delta p_x^2
angle ullet \langle \Delta x^2
angle \ge rac{\hbar^2}{4}$$

Wavefunction Postulate I

All information about a system are included in its wavefunction. The square of the wavefunction $|\Psi|^2$ describes the probability density

$$\int_{-\infty}^{+\infty} \left| \Psi(x, y, z) \right|^2 dx dy dz = 1$$

The wavefunction must be square-integrable.

Operators in Quantum Mechanics Postulate II

Operators of position

$$\hat{x} = x \bullet$$

and momentum

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

The operator is defined through its action on a function.

In order to build an operator of a complex physical quantity the positions and momenta in classical Newtonian expression are replaced by corresponding operators.

Hamiltonian - the operator of total mechanical energy

$$E_{total} = E_{kin} + E_{pot} = \frac{m\vec{v}^2}{2} + V(x, y, z) = \frac{\vec{p}^2}{2m} + V(x, y, z) = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) + V(x, y, z)$$

$$\hat{H} = \hat{T} + \hat{V} = \frac{1}{2m} \left(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \right) + \hat{V}(x, y, z)$$

Time evolution of a wavefunction Postulate III

If potential energy does not change with time the Schrödinger equation converts to:

$$\hat{H}\Psi = E\Psi$$

Values of observables Postulate IV

If a wavefunction Ψ is the eigenfunction of the operator \hat{A}

$$\hat{A}\psi = a\psi$$

The experimental measurement can give the value a, only.

Expectation (mean) value of the operator

Model 1: Free particle in space

$$E_{total} = E_{kin} + E_{pot} = \frac{mv_x^2}{2} + 0 = \frac{p_x^2}{2m} + 0$$

$$\hat{H} = \hat{T} + \hat{V} = \frac{\hat{p}_x^2}{2m} + 0 = \frac{1}{2m} \left(-i\hbar \frac{d}{dx} \right)^2 = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

$$\hat{H}\psi(x) = E\psi(x) \qquad -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \qquad \psi_1(x) = Ne^{iax}$$

$$\psi_2(x) = Ne^{-iax}$$
Test of solutions:
$$\psi_1(x) = Ne^{iax} \qquad \frac{d}{dx}\psi_1(x) = Niae^{iax} \qquad \frac{d^2}{dx^2}\psi_1(x) = N(ia)^2e^{iax} = -Na^2e^{i\hbar x}$$

$$-\frac{\hbar^2}{2m} \left(-Na^2 \right)e^{iax} = ENe^{iax} \qquad E = \frac{\hbar^2a^2}{2m}$$

Model 2: Particle in a box

The motion of a particle limited to the well <0,a>.

$$\hat{H}\psi = E\psi$$

$$\psi_{I}(x) = 0$$

$$\psi_{II}(x) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi}{a}x\right)$$

$$\psi_{III}(x) = 0$$

$$E = \frac{\hbar^2 \pi^2}{2ma^2} n^2$$

Expectation values of energy, momentum, momentum squared and position

$$\langle E \rangle = \frac{\int_{0}^{a} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx}{\int_{0}^{a} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^{2}}{2m}\right)_{0}^{a} \sin\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^{2}}{2m}\right)_{0}^{a} \sin\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^{2}}{2m}\right)_{0}^{a} \sin\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^{2}}{2m}\right)_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{2}{a} \int_{0}^{a} \frac{\pi^{2}}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{2}{a} \int_{0}^{a} \frac{\pi^{2}}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{2}{a} \int_{0}^{a} \frac{\pi^{2}}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{2}{a} \int_{0}^{a} \frac{\pi^{2}}{a} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx} = \frac{2}{a} \int_{0}^{a} \frac{\pi^{2}}{a} \int_{0}^{a} \frac{\pi^{2}}$$

Expectation values of position squared

$$\langle x^2 \rangle = \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) x^2 \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx = \frac{2}{a} \int_0^a x^2 \sin^2\left(\frac{n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 \sin\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{a} \frac{1}{2} \int_0^a x^2 dx - \frac{2}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{2} \int_0^a x^2 \cos\left(\frac{2n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{a} \frac{1}{a$$

Test of the uncertainty principle for the particle in a box:

$$\begin{split} \Delta x &= x - \langle x \rangle \qquad \Delta p_x = p_x - \langle p_x \rangle \\ \langle \Delta x^2 \rangle \langle \Delta p_x^2 \rangle &= \langle \left(x - \langle x \rangle \right)^2 \rangle \langle \left(p_x - \langle p_x \rangle \right)^2 \rangle = \langle \left(x^2 - 2x \langle x \rangle + \langle x \rangle^2 \right) \rangle \langle \left(p_x^2 - 2p_x \langle p_x \rangle + \langle p_x \rangle^2 \right) \rangle = \langle \left(x^2 - \langle x \rangle^2 \right) \rangle \langle \left(p_x^2 - \langle p_x \rangle^2 \right) \rangle = \left[a^2 \left(\frac{1}{3} - \frac{1}{2n^2 \pi^2} \right) - \left(\frac{a}{2} \right)^2 \right] \left[\frac{\hbar^2 \pi^2 n^2}{a^2} - 0 \right] = \left(\frac{1}{3} - \frac{1}{4} - \frac{1}{2n^2 \pi^2} \right) \hbar^2 \pi^2 n^2 = \left(\frac{1}{12} - \frac{1}{2n^2 \pi^2} \right) \hbar^2 \pi^2 n^2 = \left(\frac{\hbar^2}{4} \left(\frac{1}{3} \pi^2 n^2 - 2 \right) \right) > \frac{\hbar^2}{4} \end{split}$$

Eigenfunction (exact)

Trial functions (approximate):

$$\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

$$\phi_1(x) = Nx(a-x)$$

$$\phi_2(x) = Nx^2(a-x)$$

$$\phi_3(x) = Nx(a-x)^2$$

$$\phi_4(x) = Nx^2(a-x)^2$$

$$N^{2}\int_{0}^{a} \left[x^{2}(a-x)\right]^{2} dx = N^{2} \int_{0}^{a} \left(a^{2}x^{4} - 2ax^{5} + x^{6}\right) dx = N^{2} \left(a^{2}\frac{x^{5}}{5} - 2a\frac{x^{6}}{6} + \frac{x^{7}}{7}\right)_{0}^{a} = N^{2} \left(\frac{a^{7}}{5} - \frac{a^{7}}{3} + \frac{a^{7}}{7}\right) = N^{2} \frac{a^{7}}{105} = 1$$

$$N^{2} = \frac{105}{a^{7}} \qquad \qquad N = \sqrt{\frac{105}{a^{7}}} \qquad \qquad \phi_{2}(x) = \sqrt{\frac{105}{a^{7}}}x^{2}(a-x)$$

$$N^{2}\int_{0}^{a} \left[x(a-x)^{2} \right]^{2} dx = N^{2} \int_{0}^{a} \left(a^{4}x^{2} - 4a^{3}x^{3} + 6a^{2}x^{4} - 4ax^{5} + x^{6} \right) dx = N^{2} \left(a^{4}\frac{x^{3}}{3} - 4a^{3}\frac{x^{4}}{4} + 6a^{2}\frac{x^{5}}{5} - 4a\frac{x^{6}}{6} + \frac{x^{7}}{7} \right) \Big|_{0}^{a} = N^{2} \left(\frac{a^{7}}{3} - a^{7} + \frac{6a^{7}}{5} - 2\frac{a^{7}}{3} + \frac{a^{7}}{7} \right) = N^{2}\frac{a^{7}}{105} = 1$$

$$N^{2} = \frac{105}{a^{7}} \qquad \qquad N = \sqrt{\frac{105}{a^{7}}} \qquad \qquad \phi_{3}(x) = \sqrt{\frac{105}{a^{7}}x(a-x)^{2}}$$

$$N^{2}\int_{0}^{a} \left[x^{2}(a-x)^{2}\right]^{2} dx = N^{2}\int_{0}^{a} \left(a^{4}x^{4} + 4a^{2}x^{6} + x^{8} - 4a^{3}x^{5} + 2a^{2}x^{6} - 4ax^{7}\right) dx = N^{2}\int_{0}^{a} \left(x^{8} - 4ax^{7} + 6a^{2}x^{6} - 4a^{3}x^{5} + a^{4}x^{4}\right) dx = N^{2} \left(\frac{x^{9}}{9} - 4a\frac{x^{8}}{8} + 6a^{2}\frac{x^{7}}{7} - 4a^{3}\frac{x^{6}}{6} + a^{4}\frac{x^{5}}{5}\right)\Big|_{0}^{a} = N^{2}a^{9}\left(\frac{1}{9} - \frac{1}{2} + \frac{6}{7} - \frac{2}{3} + \frac{1}{5}\right) = N^{2}\frac{a^{9}}{630} = 1$$

$$N^{2} = \frac{630}{a^{9}} \qquad \qquad N = \sqrt{\frac{630}{a^{9}}} \qquad \qquad \phi_{4}(x) = \sqrt{\frac{630}{a^{9}}} x^{2} (a - x)^{2}$$

The graph of the eigenfunction and trial functions

Two-dimensional box

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} \end{bmatrix} \Psi(x, y) = E\Psi(x, y)$$

$$\Psi(x, y) = \psi_x(x)\psi_y(y)$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} \end{bmatrix} \psi_x(x)\psi_y(y) = E\psi_x(x)\psi_y(y)$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi_x(x)\psi_y(y) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} \psi_x(x)\psi_y(y) = E\psi_x(x)\psi_y(y)$$

$$-\frac{\hbar^2}{2m} \psi_y(y) \frac{\partial^2}{\partial x^2} \psi_x(x) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} \psi_y(y) = E\psi_x(x)\psi_y(y) \quad /\psi_x(x)\psi_y(y)$$

$$-\frac{\hbar^2}{2m} \frac{1}{\psi_x(x)} \frac{\partial^2}{\partial x^2} \psi_x(x) - \frac{\hbar^2}{2m} \frac{1}{\psi_y(y)} \frac{\partial^2}{\partial y^2} \psi_y(y) = E$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi_x(x) = E_x \qquad -\frac{\hbar^2}{2m} \frac{1}{\psi_y(y)} \frac{\partial^2}{\partial y^2} \psi_y(y) = E_y \qquad E_x + E_y = E$$

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi_x(x) = E_x \psi_x(x) \qquad -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} \psi_y(y) = E_y \psi_y(y)$$

$$E_{x}(n) = \frac{\hbar^{2} \pi^{2}}{2m} \frac{n^{2}}{a^{2}} \qquad \qquad \Psi_{n}(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

Two-dimensional box

Degenarate states:

If a=b

then $E_{1,2=} E_{2,1}$

$$E_{1,2} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{1^2}{a^2} + \frac{2^2}{a^2} \right)$$
$$\Psi_{1,2}(x, y) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi}{a}y\right)$$

$$E_{2,1} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{2^2}{a^2} + \frac{1^2}{a^2} \right)$$
$$\Psi_{2,1}(x, y) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}y\right)$$

Hydrogen atom – classical picture

$$F_c = \frac{mv^2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = F_e$$

$$\mathbf{v} = \frac{e}{\left(4\pi\varepsilon_0 mr\right)^{1/2}} \approx 2.10^6 ms^{-1}$$

$$E = T + V \approx 13.6 \ eV$$

$$v = \frac{1}{T} \approx 6.10^{15} \ s^{-1}$$

Reduced mass

 \Rightarrow motion of the reduced mass around a center of mass

$$\hat{H}_{e} = \frac{\hbar^{2}}{2\mu} \left[-\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} - \frac{\partial^{2}}{\partial z^{2}} \right] - \frac{e^{2}}{r}$$
$$r = \sqrt{x^{2} + y^{2} + z^{2}}$$

Schrödinger equation:

$$\hat{H}_{e}\psi(x, y, z) = E\psi(x, y, z)$$

Spherical coordinates:

 $x = r \sin\theta \cos\phi$

 $y = r \sin \theta \sin \phi$

 $z = r \cos \theta$

$$\begin{split} & Hydrogen atom 1\\ \hat{H} = -\frac{\hbar^2}{2M_j} \left[\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + \frac{\partial^2}{\partial z_j^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_e^2} + \frac{\partial^2}{\partial z_e^2} \right] - \frac{e^2}{r} \\ r = \sqrt{(x_j - x_e)^2 + (y_j - y_e)^2 + (z_j - z_e)^2} \\ & \text{Center of mass coordinates:} \\ & X = \frac{M_j x_j + m_e x_e}{M_j + m_e} \qquad x = x_e - x_j \\ & y = y_e - y_j \\ & Y = \frac{M_j y_j + m_e y_e}{M_j + m_e} \qquad z = z_e - z_j \\ & Z = \frac{M_j z_j + m_e z_e}{M_j + m_e} \qquad r = \sqrt{x^2 + y^2 + z^2} \qquad x \qquad j \qquad \text{of } y_j = y_e - y_e \\ & \hat{H} \Psi(x_j, y_j, z_j, x_e, y_e, z_e) = E_c \Psi(x_j, y_j, z_j, x_e, y_e, z_e) \end{split}$$

Transformation of the Hamiltonian to the center of mass and relative coordinates

Similarly for Y, Z, y, z:

$$\hat{H} = -\frac{\hbar^2}{2(M_j + m_e)} \left[\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \right] - \frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] - \frac{e^2}{r}$$

$$\hat{H} = -\frac{\hbar^2}{2(M_j + m_e)} \left[\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \right] - \frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] - \frac{e^2}{r}$$
Translation of atom
$$H_{trans}$$
relative motion of nucleus and electron
$$H_{e}$$

$$\Psi(x_j, y_j, z_j, x_e, y_e, z_e) = \Psi(X, Y, Z, x, y, z) = \Phi(X, Y, Z)\psi(x, y, z)$$

Schrödinger equation after the separation of coordinates:

 $\hat{H}_{trans}\Phi(X,Y,Z) = E_{trans}\Phi(X,Y,Z)$ $\hat{H}_{e}\psi(x,y,z) = E\psi(x,y,z)$ $E_{total} = E_{tr} + E_{total}$

$$\hat{H}_{e} = -\frac{\hbar^{2}}{2\mu} \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right] - \frac{e^{2}}{r}$$

Schrödinger equation:

$$\hat{H}_{e}\psi(x, y, z) = E\psi(x, y, z)$$

Współrzędne sferyczne:

 $x = r \sin\theta \cos\varphi$

 $y = r \sin\theta \sin\phi$

 $z = r \cos \theta$

 $r = \sqrt{x^2 + y^2 + z^2}$

 $0 \le r < \infty$, $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$

$$\hat{H}_{e} = -\frac{\hbar^{2}}{2\mu r^{2}} \left[\frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right] - \frac{e^{2}}{r}$$

$$\hat{H}_{e} \psi(r, \theta, \varphi) = E \psi(r, \theta, \varphi) \qquad \text{The equation}$$

$$\psi(r, \theta, \varphi) = R(r) \Theta(\theta) \Phi(\varphi) \qquad \text{The equation}$$
in spherical coordinates

After the separation a set of 3 equations:

The boundary conditions generate quantum numbers

Asymuthal equation:

$$\Phi(\varphi) = \Phi(\varphi + 2\pi) \qquad \text{m=0,\pm1,\pm2,\pm3,\dots}$$

Horizontal equation:

 $\Theta(\theta)$ Square-integrable *I=0, 1, 2, 3, ... m=-1,-I+1,...,0,...,+I*

Radial equation:

R(r) Square-integrable n=1, 2, 3, ... l=0, 1, ..., n-1Energy of the hydrogen atom $E = -\frac{\mu e^4}{2\hbar^2 n^2} = -R_H \frac{1}{n^2}$ $R_H = \frac{\mu e^4}{2\hbar^2} = 109677 cm^{-1}$

 $R_{\infty} = \frac{m_e e^4}{\left(4\pi\varepsilon_0\right)^2 2\hbar^2} = 109737.3 cm^{-1} \qquad \text{Rydberg constant}$

The wavefunctions of the H atom

 $\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi)$

Radial functions:

a_o = 0,529 Å = 0,529 · 10⁻¹⁰ m

Bohr radius

Volume element: $dV = dx dy dz = r^2 \sin\theta dr d\theta d\phi$ Normalization integral: $\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} |\psi_{nlm}(r,\theta,\varphi)|^2 r^2 \sin\theta dr d\theta d\varphi = \int_{0}^{\infty} |R(r)|^2 r^2 dr \int_{0}^{\pi} \int_{0}^{2\pi} |Y_l^m(\theta,\varphi)|^2 \sin\theta d\theta d\varphi = 1$

Radial probability density:

R²(r) r²

Notice:

For l=n-1 there is a single maximum at $r=n^{2*}a_0$

Qualitative graphs of orbitals of type: s, p, d

S

 $p_z \qquad p_y \qquad p_x$

d_{yz}

 d_{z2}

Atomic orbitals

$$\psi_{100} = N_{1s} e^{-Zr/a_0}$$

$$\psi_{200} = N_{2s} \left(2 - \frac{Zr}{a_0} \right) e^{-\frac{Zr}{2a_0}}$$

$$\psi_{210} = N_{2p} r e^{-\frac{Zr}{2a_0}} \cos\theta$$

$$N_{1s} = \frac{1}{\pi} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}}$$
$$N_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}}$$
$$N_{2s} = \frac{1}{4\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{5}{2}}$$

$$\psi_{211} = \frac{1}{\sqrt{2}} N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta e^{i\varphi}$$
$$\psi_{21-1} = \frac{1}{\sqrt{2}} N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta e^{-i\varphi}$$

Linear combinations of atomic orbitals

$$\frac{1}{\sqrt{2}} (\psi_{211} + \psi_{21-1}) \qquad \qquad \frac{-i}{\sqrt{2}} (\psi_{211} - \psi_{21-1})$$

$$2p_x = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \frac{(e^{i\varphi} + e^{-i\varphi})}{2} = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \cos \varphi = N_{2p} x e^{-\frac{Zr}{2a_0}}$$

$$2p_y = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \frac{(e^{i\varphi} - e^{-i\varphi})}{2i} = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \sin \varphi = N_{2p} y e^{-\frac{Zr}{2a_0}}$$
Spin

The Stern-Gerlach experiment

The beam of silver atoms passing through the magnetic field

Electron configuration of silver:

Ag: 1s²/2s²2p⁶/3s²3p⁶3d¹⁰/4s²4p⁶4d¹⁰/5s¹

State of an electron

Spinorbital

 $\varphi_{nlmm_s} = \psi_{nlm}\sigma_{m_s}$

Indistinguishable particles

a,b-particles

1,2 - detectors

 $P_1 = |\phi_a(1) \phi_b(2)|^2$ $P_2 = |\phi_a(2) \phi_b(1)|^2$

If particles identical $P_1 = P_2$, then:

$$\phi_{a}(1) \phi_{b}(2) = \pm \phi_{a}(2) \phi_{b}(1)$$

The particles can interfere with each other.

Indistinguishable particles

The amplitude of interference of identical particles:

Bosons	$\phi_{a}(1) \phi_{b}(2) + \phi_{a}(2) \phi_{b}(1)$	integer spin
Fermions	$\phi_{a}(1) \phi_{b}(2) - \phi_{a}(2) \phi_{b}(1)$	half-integer spin

The wavefunction for fermions is antisymmetrical with respect to permutation: $\Phi(1,2,3,...) = -\Phi(2,1,3,...)$

If two fermions occur in the same state1=2, thus $\phi_a(1) \phi_b(1) - \phi_a(1) \phi_b(1) \equiv 0$ It is the content of the Pauli exclusion principle.

The wavefunction for bosons is symmetrical.

Bosons tend to occupy the same state – thus the superfluidicity of helium ⁴He.

Multielectron atoms

Electron shells: $n = 1,2,3,... \rightarrow K,L,M,...$ $I = 0,1,2,... \rightarrow s,p,d,...$

Hund's rule:

For a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity

Multielectron atoms

The electronic term ^{2S+1}L_J

2S+1 means multiplicity, where S is the total spin.

How to determine the values of L, J, S? J = L+S, L+S-1, ..., |L-S|

The carbon atom electronic configuration 1s² 2s² 2p²

Closed shells give the total spin S = 0

$I_1 I_2$	s ₁	S ₂	m ₁	m ₂	M_{L}	L	M _S	S
1 1	+1/2	-1/2	1	1	2	2	0	0
	±1⁄2	±1⁄2	1	0	1	1	+1,0,-1 , 0	1
	±1⁄2	±1⁄2	1	-1	0	0	+1,0,-1, 0	0
	+1/2	-1/2	0	0	0		0	
	±1⁄2	±1⁄2	0	-1	-1		+1,0,-1, 0	
	$+\frac{1}{2}$	-1/2	-1	-1	-2		0	

Terms: ³P₂, ³P₁, ³P₀, ¹D₂, ¹S₀

Helium atom1

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2M_j} \left[\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + \frac{\partial^2}{\partial z_j^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial z_1^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial z_2^2} \right] - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{r_{12}} \\ \hat{H} &= -\frac{\hbar^2}{2M_j} \Delta_j - \frac{\hbar^2}{2m_e} \Delta_1 - \frac{\hbar^2}{2m_e} \Delta_2 - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{r_{12}} \end{split}$$

 $\hat{H}(i)\psi_n(i) = E_n\psi_n(i)$

The electronic Hamiltonian in the approximation of the infinitely heavy nucleus

The one-electron Hamiltonian

 $\hat{H}_e(i) = -\frac{\hbar^2}{2m_e}\Delta_i - \frac{2e^2}{r_i}$

 $\Psi(1,2) = \psi_1(1)\psi_2(2)$

 $\varphi_1(1) = \psi_1(1)\sigma_1(1)$

 $\Phi(1,2) = \varphi_1(1)\varphi_2(2) - \varphi_2(1)\varphi_1(2)$ $\Phi(2,1) = \varphi_1(2)\varphi_2(1) - \varphi_2(2)\varphi_1(1)$ $\Phi(1,2) = -\Phi(2,1)$ The one-electron approximation

Spinorbital = orbital * spin_function

Antisymmetrized multi-electron function

Helium atom 2

$$\begin{split} & \Phi(1,2) = \Psi(1,2)\sigma(1,2) & \text{Spinorbital function} = \text{orbital function}^* \text{spin function} \\ & \Psi_s(1,2) = \frac{1}{\sqrt{2}} \left[\psi_1(1)\psi_2(2) + \psi_2(1)\psi_1(2) \right] = \Psi_s(2,1) & \text{Symmetry of the orbital function} \\ & \Psi_a(1,2) = \frac{1}{\sqrt{2}} \left[\psi_1(1)\psi_2(2) - \psi_2(1)\psi_1(2) \right] = -\Psi_a(2,1) & \text{Symmetry of the spin function} \\ & \sigma_s(1,2) = \alpha(1)\alpha(2) = +\sigma_s(2,1) & \text{Symmetry of the spin function} \\ & \sigma_s(1,2) = \alpha(1)\alpha(2) = +\sigma_s(2,1) & \text{Symmetry of the spin function} \\ & \sigma_s(1,2) = \alpha(1)\alpha(2) = +\sigma_s(2,1) & \text{Symmetry of the spin function} \\ & \sigma_s(1,2) = \frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) + \beta(1)\alpha(2) \right] = +\sigma_s(2,1) & \text{Symmetry of the spin function} \\ & \sigma_s(1,2) = \frac{1}{\sqrt{2}} \left[\omega_1(1)\psi_2(2) + \psi_2(1)\psi_1(2) \right] \frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) - \beta(1)\alpha(2) \right] & \text{The singlet (S=0)} \\ & and & \text{and triplet (S=1)} \\ & \theta_{\text{triplet}}(1,2) = \frac{1}{\sqrt{2}} \left[\psi_1(1)\psi_2(2) - \psi_2(1)\psi_1(2) \right] \begin{cases} \alpha(1)\alpha(2) \\ \beta(1)\beta(2) \\ \frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) + \beta(1)\alpha(2) \right] & \text{functions} \end{cases} \end{split}$$

Multielectron atoms

$$\hat{H}_{e} = \sum_{i=1}^{n} \left(-\frac{\hbar^{2}}{2m_{e}} \Delta_{i} - \frac{ne^{2}}{r_{i}} \right) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{e^{2}}{r_{ij}}$$

$$\Phi(1,2) = \frac{1}{\sqrt{2}} \left[\varphi_1(1)\varphi_2(2) - \varphi_2(1)\varphi_1(2) \right] = \frac{1}{\sqrt{2}} \begin{vmatrix} \varphi_1(1) & \varphi_1(2) \\ \varphi_2(1) & \varphi_2(2) \end{vmatrix}$$

Determinant form of the electron function for the helium atom

$$\Phi(1,2,...,n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_1(1) & \varphi_1(2) & \dots & \varphi_1(n) \\ \varphi_2(1) & \varphi_2(2) & \dots & \varphi_2(n) \\ \dots & \dots & \dots & \dots \\ \varphi_n(1) & \varphi_n(2) & \dots & \varphi_n(n) \end{vmatrix}$$

The antisymmetrized function for the n electron system fulfills the Pauli exclusion principle

 E_{HF} : the Hartree-Fock energy – the lowest energy in the frame of one-electron approximation

 $E_{correlation} = E_{acurate} - E_{HF}$ The correlation energy

Variational method

How to solve a Schrödinger equation when the exact solution is not possible? We search for a trail function Φ which gives the lowest ground state energy.

$$\hat{H}\psi = E\psi$$
$$\varepsilon = \frac{\int \Phi^* \hat{H} \Phi dV}{\int \Phi^* \Phi dV}$$
$$\Phi = \sum_{i=1}^N c_i \varphi_i$$

If Φ is the same as ψ , then ε is equal to E_0 .

If Φ is an approximation of ψ , then ε is higher than E_0 .

Linear combinations method:

The best trial function Φ is searched as a linear combination of functions ϕ_i , which form a set of basis functions. ϵ is minimized with respect to coefficients c_i :

 $H_{ij} = \int \varphi_i^* \hat{H} \varphi_j dV$ $S_{ij} = \int \varphi_i^* \varphi_j dV$

$$\frac{\partial \varepsilon}{\partial c_i} = 0 \qquad dla \ i = 1, \dots, N$$

A set of linear equations on coefficients c_i:

$$c_i (H_{ii} - \varepsilon) + \sum_{j \neq i} c_j (H_{ij} - S_{ij} \varepsilon) = 0 \quad dla \ i = 1, ..., N$$

The variational method for a particle in a box (1)

$$\varphi_{1}(x) = \sqrt{\frac{30}{a^{7}}} x(a-x)$$
$$\varphi_{2}(x) = \sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2}$$
$$\Phi(x) = c_{1}\varphi_{1}(x) + c_{2}\varphi_{2}(x)$$

The basis functions ϕ_1 i ϕ_2 are normalized, thus $S_{11}{=}1$ i $S_{22}{=}1.$

The set of secular equations:

$$\begin{cases} c_1(H_{11} - \varepsilon) + c_2(H_{12} - S_{12}\varepsilon) = 0\\ c_1(H_{21} - S_{21}\varepsilon) + c_2(H_{22} - \varepsilon) = 0 \end{cases}$$

The necessary conditions for the existence of non-trivial solutions:

$$\begin{vmatrix} H_{11} - \varepsilon & H_{12} - S_{12}\varepsilon \\ H_{21} - S_{21}\varepsilon & H_{22} - \varepsilon \end{vmatrix} = 0 \qquad \qquad H_{12} = H_{21} \qquad S_{12} = S_{21} =$$

The normalization of the function $\Phi(x)$:

$$\int \Phi^*(x) \Phi(x) dx = \int \Phi^2(x) dx = \int [c_1 \varphi_1(x) + c_2 \varphi_2(x)]^2 dx = c_1^2 \int \varphi_1^2 dx + c_2^2 \int \varphi_2^2 dx + 2c_1 c_2 \int \varphi_1 \varphi_2 dx = 1$$

$$c_1^2 + c_2^2 + 2c_1 c_2 S = 1$$

The variational method for a particle in a box (2)

$$\begin{bmatrix} c_1(H_{11} - \varepsilon) + c_2(H_{12} - S\varepsilon) = 0\\ c_1(H_{12} - S\varepsilon) + c_2(H_{22} - \varepsilon) = 0 \end{bmatrix}$$

$$c_{1}^{2} + c_{2}^{2} + 2c_{1}c_{2}S = 1$$

$$c_{2} = -c_{1}\frac{H_{11} - \varepsilon}{H_{12} - S\varepsilon}$$

$$\begin{vmatrix} H_{11} - \varepsilon & H_{12} - S\varepsilon \\ H_{12} - S\varepsilon & H_{22} - \varepsilon \end{vmatrix} = 0$$

$$\begin{aligned} &(H_{11} - \varepsilon)(H_{22} - \varepsilon) - (H_{12} - S\varepsilon)^2 = 0\\ &(1 - S^2)\varepsilon^2 - (H_{11} + H_{22} - 2H_{12}S)\varepsilon + H_{11}H_{22} - H_{12}^2 = 0\\ &\Delta = (H_{11} + H_{22} - 2H_{12}S)^2 - 4(1 - S^2)(H_{11}H_{22} - H_{12}^2) =\\ &= (H_{11} - H_{22})^2 + 4H_{12}^2 + 4S(H_{11}H_{22}S - H_{11}H_{12} - H_{22}H_{12})\\ &\varepsilon_1 = \frac{1}{2(1 - S^2)} \Big[H_{11} + H_{22} - 2H_{12}S - \sqrt{\Delta}\Big] \\ &\varepsilon_2 = \frac{1}{2(1 - S^2)} \Big[H_{11} + H_{22} - 2H_{12}S + \sqrt{\Delta}\Big] \end{aligned}$$
 For every or ε_2 the second ficients

For every calculated energy ε_1 or ε_2 the set of equations on coefficients c_1 i c_2 is solved.

The variational method for a particle in a box (3)

The calculation of integrals :

$$S_{12} = S_{21} = S = \int_{0}^{a} \sqrt{\frac{30}{a^{5}}} x(a-x) \sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2} dx = \frac{\sqrt{30*630}}{a^{7}} \int_{0}^{a} x^{3}(a^{3}-3a^{2}x+3ax^{2}-x^{3}) dx =$$

$$= \frac{30\sqrt{21}}{a^{7}} \left[a^{3} \frac{x^{4}}{4} - 3a^{2} \frac{x^{5}}{5} + 3a \frac{x^{6}}{6} - \frac{x^{7}}{7} \right]_{0}^{a} = 30\sqrt{21} \left[\frac{1}{4} - \frac{3}{5} + \frac{1}{2} - \frac{1}{7} \right] = 30\sqrt{21} \frac{35-84+70-20}{140} = \frac{3\sqrt{21}}{14}$$

$$H_{12} = \int_{0}^{a} \sqrt{\frac{30}{a^{5}}} x(a-x) \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \right) \sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2} dx = \frac{\hbar^{2}}{2m} \frac{\sqrt{30*630}}{a^{7}} \int_{0}^{a} (ax-x^{2}) \left(-2a^{2}+12ax-12x^{2} \right) dx =$$

$$= \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \int_{0}^{a} \left(-2a^{3}x+12a^{2}x^{2}-12ax^{3}+2a^{2}x^{2}-12ax^{3}+12x^{4} \right) dx =$$

$$= \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \left[-2a^{3} \frac{x^{2}}{2}+14a^{2} \frac{x^{3}}{3}-24a \frac{x^{4}}{4}+12 \frac{x^{5}}{5} \right]_{0}^{a} = \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{2}} \left[-1+\frac{14}{3}-6+\frac{12}{5} \right] = \frac{\hbar^{2}}{2m} \frac{2\sqrt{21}}{a^{2}}$$

$$H_{21} = \int_{0}^{a} \sqrt{\frac{630}{a^{9}}} x^{2} (a-x)^{2} \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}}\right) \sqrt{\frac{30}{a^{5}}} x(a-x) dx = \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \int_{0}^{a} \left(a^{2}x^{2} - 2ax^{3} + x^{4}\right) 2 dx = \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \left[2a^{2} \frac{x^{3}}{3} - 4a \frac{x^{4}}{4} + 2\frac{x^{5}}{5}\right]_{0}^{a} = \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{2}} \left[\frac{2}{3} - 1 + \frac{2}{5}\right] = \frac{\hbar^{2}}{2m} \frac{2\sqrt{21}}{a^{2}}$$

The variational method for a particle in a box (4)

 $3\sqrt{21}$

The calculation of integrals :

 $t^2 2 \sqrt{21}$

The integrals for energy $\frac{\hbar^2}{2ma^2}$ in units of $\frac{\pi^2}{2ma^2}$

$$H_{12} = H_{21} = \frac{n}{2m} \frac{2\sqrt{21}}{a^2} \qquad S = \frac{3\sqrt{21}}{14}$$
$$H_{11} = \int_0^a \sqrt{\frac{30}{a^5}} x (a - x) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) \sqrt{\frac{30}{a^5}} x (a - x) dx = \frac{\hbar^2}{2m} \frac{10}{a^2}$$
$$H_{22} = \int_0^a \sqrt{\frac{630}{a^9}} x^2 (a - x)^2 \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) \sqrt{\frac{630}{a^9}} x^2 (a - x)^2 dx = \frac{\hbar^2}{2m} \frac{12}{a^2}$$

The set of secular equations:

$$c_{1}(10-\varepsilon)+c_{2}(2\sqrt{21}-\varepsilon\frac{3\sqrt{21}}{14})=0$$

$$c_{1}\left(2\sqrt{21}-\varepsilon\frac{3\sqrt{21}}{14}\right)+c_{2}(12-\varepsilon)=0$$

$$\begin{vmatrix} 10-\varepsilon\\ 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon\\ 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon\\ 12-\varepsilon\end{vmatrix} = 0$$

$$\begin{vmatrix} 10-\varepsilon\\ 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon\\ 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon\\ 12-\varepsilon\end{vmatrix} = 0$$

$$\begin{vmatrix} 1-\frac{9*21}{196}\right]\varepsilon^{2}-(10+12-2*2*\sqrt{21}*3*\sqrt{21}/14)\varepsilon+10*12-4*21=0\\ \frac{1}{28}\varepsilon^{2}-4\varepsilon+36=0\\ \Delta=16-4*(1/28)*36=76/7 \qquad \sqrt{\Delta}=3,295017884\\ \varepsilon_{1}=(4-3,295017884)*(28/2)=9,869719621\\ \varepsilon_{2}=(4+3,295017884)*(28/2)=102,13025038\end{vmatrix}$$

The variational method for a particle in a box (5)

 $c_1^2 + c_2^2 + 2c_1c_2S = 1$

 $c_2 = -c_1 \frac{H_{11} - \varepsilon}{H_{12} - S\varepsilon}$

Calculation of the linear combination coefficients:

 $\varepsilon_1 = 9,869719621$

$$c_2 = -c_1 \frac{10 - 9,869719621}{2*\sqrt{21} - 9,869719621*3*\sqrt{21}/14}$$

 $c_2 = 0,247271562c_1$

$$c_1 = \sqrt{\frac{1}{1 + 0,247271562^2 + 2*0,247271562*2*\sqrt{21}/14}}$$

 $c_1 = 0,80405626$

 $c_2 = 0,19882025$

 $\Phi_1 = 0,80405626\varphi_1 + 0,19882025\varphi_2$

The exact value of energy E_1 for a particle in a box [in units of $\frac{\hbar^2}{2ma^2}$] $E_1 = \pi^2 = 9,869604401$ $\varepsilon_1 > E_1$

The variational method for a particle in a box (6)

A graph of the functions:

The function sin(x) and the linear combination of functions ϕ_1 and ϕ_2 overlap in a scale of the graph

The Hartree-Fock method for an atom

$$\begin{split} \hat{H}_{e} &= \sum_{i=1}^{n} \left(-\frac{\hbar^{2}}{2m_{e}} \Delta_{i} - \frac{Ze^{2}}{r_{i}} \right) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{e^{2}}{r_{j}} & \text{The Hamiltonian for N-electron atom} \\ \Psi(1,2,...,n) &= \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_{1}(1) & \phi_{1}(2) & \dots & \phi_{1}(n) \\ \phi_{2}(1) & \phi_{2}(2) & \dots & \phi_{2}(n) \\ \dots & \dots & \dots & \dots \\ \phi_{n}(1) & \phi_{n}(2) & \dots & \phi_{n}(n) \end{vmatrix} & \phi_{p}(i) = \phi_{p}(i)\sigma_{p}(i) & \sigma_{p} = \alpha \text{ lub } \beta \\ \hat{F}(i)\phi_{p}(i) &= \varepsilon_{p}\phi_{p}(i) & p = 1,2,3,\dots,n \\ F(1) &= \hbar(1) + J(1) - K(1) & \text{The orbital energy} \\ \hat{F}(1) &= \hbar(1) + J(1) - K(1) & \text{The orbital energy} \\ \hat{h}(1) &= -\frac{\hbar^{2}}{2m_{e}}\Delta_{1} - \sum_{A} \frac{Z_{A}e^{2}}{r_{1A}} & \text{One-electron operator} \\ J(1)\phi_{i}(1) &= \left[\int \phi_{j}^{*}(2) \frac{e^{2}}{r_{12}}\phi_{j}(2)dV_{2} \right] \phi_{i}(1) & \text{Exchange} \end{split}$$

Unrestricted Hartree-Fock method (UHF)

$$\phi_p(i) = \varphi_p(i)\sigma_p(i)$$
 $\sigma_p = \alpha \text{ or } \beta$

where: φ_p is real, and numbers of electrons with spin α and β are not equal Used for the open-shell systems (atoms or molecules) (different orbital energies for spins α and β)

Restricted Hartree-Fock (RHF)

Even number of electrons, equal number of electrons of spin α and β . The number of spinorbitals is twice as many as that of occupied orbitals.

$$\phi_{2p-1}(i) = \varphi_p(i)\alpha(i)$$
$$\phi_{2p}(i) = \varphi_p(i)\beta(i)$$

The number of spinorbitals is equal to the number of electrons, wheras each orbital is occupied by two electrons.

LUMO (Lowest unoccupied molecular orbital)

HOMO (Highest occupied molecular orbital)

The method of Hartree-Fock-Roothan SCF-LCAO-MO

(Self consistent field-linear combination of atomic orbitals- molecular orbitals) One-electron approximation:

$$\Psi(1,2,...,n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(1) & \phi_1(2) & \dots & \phi_1(n) \\ \phi_2(1) & \phi_2(2) & \dots & \phi_2(n) \\ \dots & \dots & \dots & \dots \\ \phi_n(1) & \phi_n(2) & \dots & \phi_n(n) \end{vmatrix}$$

$$\phi_i(k) = \varphi_i(k)\sigma_i(k) \qquad \sigma_i = \alpha \text{ or } \beta$$

LCAO (Linear Combination of Atomic Orbitals)

One-electron finctions as linear combinations of basis functions:

$$\varphi_i(1) = \sum_{j=1}^m c_{ij} \chi_j(1)$$

In a molecule: expansion of molecular orbitals $\phi_i(r)$ using the basis functions – atomic orbitals $\chi_i(r)$

$$\varphi_i(\vec{r}) = \sum_{j=1}^m c_{ij} \chi_j(\vec{r})$$

Atomic orbitals $\chi_j(r)$ are usually centered on atomic nuclei Atomic orbital AO = radial function × angular function

$$\chi(\vec{r}) = \chi(r, \theta, \varphi) = R(r)Y_{lm}(\theta, \varphi)$$

 Angular function I=
 0
 1
 2
 3

 s
 p
 d
 f

AO are grouped in shells of a given I having the same radial function Radial function– 2 types of basis sets: Slater R(r)= polynomial(r) * exp(- αr) Gauss R(r)= polynomial(r) * exp(- αr^2)

The Slater functions have a proper asymptotic behavior for small and large values of r, but the calculation of integrals with r_{12} are time-consuming and the Gaussian functions are used much more often.

Contracted Gaussian basis sets

$$\chi_j(r) = \sum_{k=1}^K a_{jk} G_k(r)$$

where:

 χ_i is a Contracted Gaussian Type Orbital CGTO

G_k is a primitive Gaussian Type Orbital PGTO

The linear expansion coefficients are determined by the software authors, are not further optimized in the process of the SCF calculations.

Example in Excel

Minimum basis set (single zeta SZ)

one radial function R(r) for each shell

Example:

atom C 1s² 2s² 2p²

Basis function: one radial function to represent the orbital 1s one radial function to represent the orbital 2s one radial function to represent the orbital 2p

Thus, there are 5 basis functions

 χ_{1s} , χ_{2s} , χ_{2px} , χ_{2py} , χ_{2pz}

Double zeta basis set (DZ)

two radial functions R(r) for each shell

Example:

atom C 1s² 2s² 2p²

Basis function: two radial functions to represent the orbital 1s two radial functions to represent the orbital 2s two radial functions to represent the orbital 2p

Thus, there are 10 basis functions

 $\chi_{1s;1} \ , \ \chi_{1s;2} \ , \ \chi_{2s;1} \ , \ \chi_{2s;2} \ , \ \chi_{2px;1} \ , \ \chi_{2px;2} \ , \ \chi_{2py;1} \ , \ \chi_{2py;2} \ , \ \chi_{2pz;1} \ , \ \chi_{2pz;2} \ , \$

Double zeta valence basis set (DZV)

one radial function R(r) for each shell of core electrons two radial functions R(r) for each shell of valence electrons

Example:

atom C $1s^2 2s^2 2p^2$

Basis function: one radial function to represent the orbital 1s two radial functions to represent the orbital 2s two radial functions to represent the orbital 2p

Thus, there are 9 basis functions

 $\chi_{1s} \ , \ \chi_{2s;1} \ , \ \chi_{2p;2} \ , \ \chi_{2pz;1} \ , \ \chi_{2pz;2} \ , \ \chi$

By analogy, the triple zeta valence basis set (TZV)

one radial function R(r) for each shell of core electrons three radial functions R(r) for each shell of valence electrons

Example:

atom C 1s² 2s² 2p²

Basis function: one radial function to represent the orbital 1s three radial functions to represent the orbital 2s three radial functions to represent the orbital 2p Thus, there are 13 basis functions

 X_{1s} , $X_{2s;1}$, $X_{2s;2}$, $X_{2s;3}$, $X_{2px;1}$, $X_{2px;2}$, $X_{2px;3}$, $X_{2py;1}$, $X_{2py;2}$, $X_{2py;3}$, $X_{2pz;1}$, $X_{2pz;2}$

Polarization functions– additional functions for unoccupied orbitals Example:

atom C 1s² 2s² 2p²

Double zeta valence polarization functions (DZVP)

Basis functions: one radial function to represent the orbital 1s

three radial functions to represent the orbital 2s

three radial functions to represent the orbital 2p

one radial function to represent the orbital 3s

Thus, there are 15 basis functions

1 function 1s, 2 functions 2s, 2 functions 2px, 2 functions 2py, 2 functions 2pz, In addition 6 functions 3d (d_{xy} , d_{yz} , d_{xz} , d_{xz} , d_{y2} , d_{z2})

Diffusion functions – additional radial function with small value of the exponent i.e. expanding far from the nucleus

Used for calculations for anions

Pople basis sets

6-31G VDZ

core function: 1 contraction of 6 PGTO valence functions: 2 contractions (of 3 and 1 PGTO)

3-21G VDZ the same number of contractions by smaller number of PGTO

6-311G VTZ

core function: 1 contraction of 6 PGTO valence functions: 3 contractions (of 3, 1 and 1 PGTO)

Typical description of the basis set

STO-2G

S 2 1.00

BASIS="STO-2G"

Primitive GTO

$$GTO = \frac{2\alpha}{\pi^{0.75}} e^{-\alpha r^2} = N_{\alpha} e^{-\alpha r^2}$$

H 0

- S 2 1.00 27.38503303 0.43012850
 - 4.87452205 0.67891353

1.30975638 0.43012850 0.23313597 0.67891353

- SP 2 1.00
 - 1.13674819 0.04947177 0.51154071 0.28830936 0.96378241 0.61281990

For H (1s): $\psi_{1s}^{H} = 0,43012850 * N_{\alpha}e^{-1,30975638^{2}} + 0,67891353 * N_{\alpha}e^{-0,233313597^{2}}$ For C (1s): $\psi_{1s}^{C} = 0,43012850 * N_{\alpha}e^{-27,38503303^{2}} + 0,67891353 * N_{\alpha}e^{-4,87452205^{2}}$ (2s): $\psi_{2s}^{C} = 0,04947177 * N_{\alpha}e^{-1,13674819^{2}} + 0,96378241 * N_{\alpha}e^{-0,28830936^{2}}$ (2p_z): $\psi_{2p}^{C} = 0,51154071*N_{\alpha}e^{-1,13674819^{2}} + 0,61281990*N_{\alpha}e^{-0,28830936^{2}}$

Pople basis sets

For larger basis sets supplement of polarization functions(of higher value of I) 6-31G* = 6-31(d) = VDZP

> core function: 1 contraction of 6 PGTO valence functions: 2 contractions (of 3 and 1 PGTO) polarization functions: 1 contraction of 1 PGTO

Diffusion functions:

6-31+G* ditto + low exponent function (far-expanding)

Summary of basis sets

Effective basis set – look for hints in bibliography or in your own experience (generally: different basis set required for different molecular properties)

Routine calculations – basis sets \geq VDZP

Gaussian basis sets:

- Pople 6-311G(d)

(for H usually the polarization functions p are not added)

- for correlation type calculations (MP2, CI)

correlation consistent cc-pVnZ (n=D,T,Q,5,...)

augmented aug-cc-pVnZ

Ion H₂⁺ - the simplest molecule

$$\varepsilon = \frac{\int \psi^{2} H \psi \, dV}{\int \psi^{*} \psi \, dV}$$

$$\varepsilon \int \psi^{*} \psi \, dV = \int \psi^{*} \hat{H} \psi \, dV$$

$$\varepsilon \int (c_{1}\chi_{a} + c_{2}\chi_{b})^{2} dV = \int (c_{1}\chi_{a} + c_{2}\chi_{b}) \hat{H} (c_{1}\chi_{a} + c_{2}\chi_{b}) dV$$

$$\varepsilon \Big[c_{1}^{2} \int \chi_{a}^{2} dV + c_{2}^{2} \int \chi_{b}^{2} dV + 2c_{1}c_{2} \int \chi_{a}\chi_{b} dV \Big] = c_{1}^{2} \int \chi_{a} \hat{H} \chi_{a} dV + c_{2}^{2} \int \chi_{b} \hat{H} \chi_{b} dV + 2c_{1}c_{2} \int \chi_{a} \hat{H} \chi_{b} dV$$

$$\varepsilon \Big[c_{1}^{2} + c_{2}^{2} + 2c_{1}c_{2}S \Big] = c_{1}^{2}H_{aa} + c_{2}^{2}H_{bb} + 2c_{1}c_{2}H_{ab}$$

$$\frac{\partial \varepsilon}{\partial c_{1}} \Big[c_{1}^{2} + c_{2}^{2} + 2c_{1}c_{2}S \Big] + \varepsilon \Big[2c_{2} + 2c_{1}S \Big] = 2c_{2}H_{bb} + 2c_{1}H_{ab}$$

$$\frac{\partial \varepsilon}{\partial c_{2}} \Big[c_{1}^{2} + c_{2}^{2} + 2c_{1}c_{2}S \Big] + \varepsilon \Big[2c_{2} + 2c_{1}S \Big] = 2c_{2}H_{bb} + 2c_{1}H_{ab}$$

$$H_{aa} = H_{bb}$$

$$E \Big[2c_{1} + 2c_{2}S \Big] = 2c_{1}H_{aa} + 2c_{2}H_{ab}$$

$$E \Big[2c_{2} + 2c_{1}S \Big] = 2c_{2}H_{ab} + 2c_{1}H_{ab}$$

$$F \Big[2c_{2} + 2c_{1}S \Big] = 2c_{2}H_{aa} + 2c_{1}H_{ab}$$

$$c_{1}(H_{aa} - E) + c_{2}(H_{ab} - SE) = 0$$

 $c_1(H_{ab} - SE) + c_2(H_{aa} - E) = 0$

Ion H_2^+

 $\begin{vmatrix} H_{aa} - E & H_{ab} - SE \\ H_{ab} - SE & H_{aa} - E \end{vmatrix} = 0$ $(H_{aa} - E)^2 - (H_{ab} - SE)^2 = 0$ $H_{aa} - E = \pm (H_{ab} - SE)$ $H_{aa} - E = -H_{ab} + SE$ $H_{aa} - E = H_{ab} - SE$ $E + SE = H_{aa} + H_{ab}$ $E-SE=H_{aa}-H_{ab}$ $E_{+} = \frac{H_{aa} + H_{ab}}{1 + S}$ $E_{-} = \frac{H_{aa} - H_{ab}}{1 - S}$ $H_{ab} \leq 0$ $S \ll 1$ $E_{\perp} \ll E_{\perp}$ $H_{aa} \approx E_H = -R \frac{1}{n^2} < 0$

Since both centers a and b are equivalent $c_1^2 = c_2^2$ thus $c_1 = \pm c_2$ for $E_+ \rightarrow \psi_+ = c_1 \chi_a + c_1 \chi_b = N_+ (\chi_a + \chi_b)$ $N_+ = \frac{1}{\sqrt{2 + 2S}}$ for $E_- \rightarrow \psi_- = c_1 \chi_a - c_1 \chi_b = N_- (\chi_a - \chi_b)$ $N_- = \frac{1}{\sqrt{2 - 2S}}$

If R decreases, then $|H_{ab}|$ increases

Ion H_2^+

Molecular Hamiltonian H₂

$$\hat{H} = -\frac{\hbar^2}{2M_A} \nabla_A^2 - \frac{\hbar^2}{2M_B} \nabla_B^2 + \frac{e^2}{|\vec{R}|} - \frac{\hbar^2}{2m_e} \left(\nabla_1^2 + \nabla_2^2 \right) + \frac{e^2}{r_{12}} - \frac{e^2}{r_{A1}} - \frac{e^2}{r_{A2}} - \frac{e^2}{r_{B1}} - \frac{e^2}{r_{B2}} - \frac{e^$$

Adiabatic approximation: (Born-Oppenheimer appr.)

 $\Psi_{vr}(\vec{R})$

$$\Psi(\{r\}, \vec{R}) = \psi_e(\{r\}; R) \Psi_{vr}(\vec{R})$$

The molecular wave function presented as a product of the electronic wave function and the function for a motion of nuclei.

 $\psi_{e}(\{r\}; R)$ The function describes a distribution of electrons for the instantaneous position of nuclei R

The function describes a distribution of nuclei – their distance R and the direction of the vector \vec{R}

Separation of molecular Schrödinger equation

 $\hat{H} = \hat{H}_e + \hat{H}_{vr}$

$$\hat{H}_{vr} = -\frac{\hbar^2}{2M_A} \nabla_A^2 - \frac{\hbar^2}{2M_B} \nabla_B^2 + E_e(R)$$
$$\hat{H}_{vr}(\vec{R}) \Psi_{vr}(\vec{R}) = E_{vr} \Psi_{vr}(\vec{R})$$

Borna-Oppenheimer approximation: $R_{AB} = const$ One-electron approximation:

1 ° ° 2 2 ° 1

$$\begin{array}{ccc} A^{\bigcirc} & \bigcirc_{\mathsf{B}} & \\ \psi_1 = \psi_A(1)\psi_B(2) & \psi_1 = c_1\psi_1 + c_2\psi_2 & A^{\bigcirc} & \bigcirc_{\mathsf{B}} & \\ \psi_2 = \psi_A(2)\psi_B(1) & \psi_2 = \psi_A(2)\psi_B(1) & \end{array}$$

H₂ molecule

Slater determinant

$$\psi = N \begin{vmatrix} \varphi_A(1)\alpha(1) & \varphi_A(2)\alpha(2) \\ \varphi_B(1)\beta(1) & \varphi_B(2)\beta(2) \end{vmatrix} = N [\varphi_A(1)\varphi_B(2) + \varphi_A(2)\varphi_B(1)] [\alpha(1)\beta(2) - \alpha(2)\beta(1)]$$

Total energy:

$$E_{e} = 2\sum_{i=1}^{n/2} h_{ii} + \sum_{i=1}^{n/2} \sum_{j=i}^{n/2} \left(2J_{ij} - K_{ij} \right) + V_{nn}$$
$$h_{ii} = \int \varphi_{i}^{*} (1) \left[-\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \sum_{A} \frac{Z_{A}e^{2}}{r_{1A}} \right] \varphi_{i} (1) dV_{1}$$
$$J_{ij} = \int \varphi_{i}^{*} (1) \varphi_{i} (1) \frac{e^{2}}{r_{12}} \varphi_{j}^{*} (2) \varphi_{j} (2) dV_{1} dV_{2}$$
$$K_{ij} = \int \varphi_{i}^{*} (1) \varphi_{j} (1) \frac{e^{2}}{r_{12}} \varphi_{i}^{*} (2) \varphi_{j} (2) dV_{1} dV_{2}$$

Orbital energy:

$$\varepsilon_i = h_{ii} + \sum_{j}^{n/2} \left(2J_{ij} - K_{ij} \right)$$

Average energy of electron repulsion:

$$V_{ee} = \sum_{i}^{n/2} \sum_{j}^{n/2} \left(2J_{ij} - K_{ij} \right)$$

The total energy is not equal to the sum of orbital energies

$$E_e = \sum_{i}^{n/2} 2\varepsilon_i - V_{ee}$$

Rovibrational equation

$$\hat{H}_{vr} = -\frac{\hbar^2}{2M_A} \nabla_A^2 - \frac{\hbar^2}{2M_B} \nabla_B^2 + E_e(R)$$
$$\hat{H}_{vr}(\vec{R}) \Psi_{vr}(\vec{R}) = E_{vr} \Psi_{vr}(\vec{R})$$

Separation of rotational and vibrational equations:

$$\Psi_{vr}(\vec{R}) = \Psi_{v}(R)\Psi_{r}(\chi,\theta,\varphi)$$

 $\hat{H}_{v}(R)\Psi_{v}(R) = E_{v}\Psi_{v}(R)$

Euler angles

 $H_r(\chi,\theta,\varphi)\Psi_r(\chi,\theta,\varphi) = E_r\Psi_r(\chi,\theta,\varphi)$

Total energy of a molecule in the adiabatic approximation

$$\mathsf{E} = \mathsf{E}_{\mathsf{e}} + \mathsf{E}_{\mathsf{v}} + \mathsf{E}_{\mathsf{r}}$$

Reduced mass:

 $\frac{1}{\mu} = \frac{1}{m_a} + \frac{1}{m_b}$

M = -J, -J + 1, ..., 0, ..., J

(2J+1) - fold degeneracy of a rotational state

Rigid rotor (E_r)
$$E_r(J) = \frac{\hbar^2}{2\mu R^2} J(J+1)$$
 $J=0, 1, 2, ...$

 $I = \mu R^2$ Moment of inertia

Rotational constant B $B = \frac{\hbar^2}{2\mu R^2} = \frac{\hbar^2}{2I}$

 $E_I = BJ(J+1)$

Moment of inertia - CO₂

$$I_{x} = \sum_{i=1}^{n} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right)$$

$$1.16 \text{ Å} \qquad \qquad z \qquad z \qquad z \qquad z$$

The coordinates of nuclei measured in the center of mass molecular axis system

Constants:

 $\mu = 1.660538921*10^{-27} \text{ kg}$

l= 7.1501*10⁻⁴² kg*m²

B= 7.7772*10⁻²⁸ J

ħ = 1.0545919*10⁻³⁴ J*s

c = 299792400 m/s

 $hc = 1.9865*10^{-25} J*m = 1.9865*10^{-27} J*cm$

 $B/(hc) = 0.3915 \text{ cm}^{-1}$ B*c = 1.1737*10⁺⁰⁶ s⁻¹ = 1.1737 MHz

Vibrational energy (E_v)

At the minimum the potential energy curve is approximated with a parabola, what leads to the Schrödinger equation for a harmonic oscillator

Harmonic oscillator

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + \frac{1}{2}kx^2\Psi = E\Psi$$

The energy of a harmonic oscillator

$$E = \hbar \omega \left(n + \frac{1}{2} \right)$$
$$\Psi_n(x) = e^{-\frac{1}{2}x^2} H_n(x)$$

$$\hbar = \frac{h}{2\pi} \qquad \omega = 2\pi\nu \qquad \hbar\omega = h\nu$$

Х

2-dimensional harmonic oscillator

 $-\frac{\hbar^2}{2m} \left| \frac{d^2 \Psi}{dx^2} + \frac{d^2 \Psi}{dy^2} \right| + \frac{1}{2} k \left(x^2 + y^2 \right) \Psi = E \Psi$ $0 < r < \infty$ $x = r \cos \varphi$ $y = r \sin \varphi$ $0 < \varphi < 2\pi$ $\Psi_{n,l}(r,\varphi) = N_{n,l} e^{-r^2/2} r^{|l|} \left[L_{(n+|l|)/2}^{|l|}(r) \right] e^{il\varphi}$ $E = \hbar \omega (n+1)$ *n* = 0,1,2,... l = n, n - 2, ..., -n + 2, -n

Vibrations in the Morse potential

Morse potential- closer to a real one than the harmonic potential

takes into account the anharmonicity and dissociation limit The exact solution of the Schrödingera equation with the Morse potential Γ

$$V(r) = D_e \left[1 - e^{-\alpha(r-r_0)} \right]^2$$
$$\alpha = \left(\frac{k}{2D_e} \right)^{1/2} \qquad k = \left(\frac{\partial^2 V}{\partial r^2} \right)_{r_0}$$
$$E_v = \left(v + \frac{1}{2} \right) \hbar \omega - \left(v + \frac{1}{2} \right)^2 \hbar \omega x_e$$

$$\omega x_e = \frac{\alpha \hbar}{2\mu}$$

Effective rovibrational Hamiltonian for a diatomic molecule

 $E_{vib-rot}(v,J) = (v + \frac{1}{2})\hbar\omega - (v + \frac{1}{2})^2\hbar\omega x_e + BJ(J+1) - DJ^2(J+1)^2$

Harmonic term

Rigid rotor term

Anharmonic term

Nonrigid rotor term

Vibrational selection rules

∆v=+1

Notation for a vibrational transition

V'←V"

Upper state \leftarrow lower state

Fundamental bands

v'←v" = 1←0

Hot bands

v'←v" = 2←1

v'←v" = 3←2

When the potential is anharmonic, allowed transitions $\Delta v=+2, +3$, Like overtones $v' \leftarrow v'' = 2 \leftarrow 0$

Rotational selection rules

Transitions within a single vibrational state

Rovibrational transitions

v"=0

v'=1

Ground state combination differences (GSCD)

. . .

3

Energy differences E(v,J) in the ground state E(0,2)-E(0,0)=R(0)-P(2) E(0,3)-E(0,1)=R(1)-P(3)E(0,4)-E(0,2)=R(2)-P(4)

 $E(0,J+2)-E(0,J)=B_0[(J+2)(J+3)-J(J+1)] -D_0[(J+2)^2(J+3)^2-J^2(J+1)^2]=$ =R(J)-P(J+2)

From sufficient number of P i R transitions having common upper levels, the accurate values of B_0 i D_0 constants for the ground state can be determined using a linear regression.

GSCD – example for ¹²C¹⁶O

Р	v'	J'	V"	J"	R	v'	J'	V"	J"	R-P(exp)	obl	(e-o)^2
2135.5473	2	1	1	2	2147.0823	2	1	1	0	11.5350	11.5349	3.53E-09
2131.6326	2	2	1	3	2150.8571	2	2	1	1	19.2245	19.2244	7.74E-09
2127.6832	2	3	1	4	2154.5967	2	3	1	2	26.9135	26.9131	1.23E-07
2123.6999	2	4	1	5	2158.3008	2	4	1	3	34.6009	34.6009	1.52E-09
2119.6819	2	5	1	6	2161.9694	2	5	1	4	42.2875	42.2873	6.16E-08
2115.6301	2	6	1	7	2165.6022	2	6	1	5	49.9721	49.9720	5.07E-09
2111.5442	2	7	1	8	2169.1991	2	7	1	6	57.6549	57.6549	1.44E-12
2107.4244	2	8	1	9	2172.7599	2	8	1	7	65.3355	65.3356	4.67E-09
2103.2709	2	9	1	10	2176.2846	2	9	1	8	73.0137	73.0137	1.93E-09
2099.0838	2	10	1	11	2179.7730	2	10	1	9	80.6892	80.6891	4.58E-09
2094.8635	2	11	1	12	2183.2249	2	11	1	10	88.3614	88.3614	1.6E-09
2090.6098	2	12	1	13	2186.6402	2	12	1	11	96.0304	96.0304	6.92E-10
2086.3231	2	13	1	14	2190.0188	2	13	1	12	103.6957	103.6956	3.61E-09
2082.0034	2	14	1	15	2193.3603	2	14	1	13	111.3569	111.3569	2.04E-09
2077.6508	2	15	1	16	2196.6648	2	15	1	14	119.0140	119.0140	1.37E-11
2073.2656	2	16	1	17	2199.9322	2	16	1	15	126.6666	126.6665	1.01E-08
2068.8479	2	17	1	18	2203.1620	2	17	1	16	134.3141	134.3142	3.86E-09
2064.3980	2	18	1	19	2206.3547	2	18	1	17	141.9567	141.9567	9.85E-11
2059.9158	2	19	1	20	2209.5094	2	19	1	18	149.5936	149.5938	3.62E-08
2055.4015	2	20	1	21	2212.6266	2	20	1	19	157.2251	157.2252	4.77E-09
2050.8552	2	21	1	22	2215.7057	2	21	1	20	164.8505	164.8505	1.11E-09
2046.2770	2	22	1	23	2218.7466	2	22	1	21	172.4696	172.4696	1.1E-10
2041.6677	2	23	1	24	2221.7494	2	23	1	22	180.0817	180.0820	1.19E-07
2037.0262	2	24	1	25	2224.7141	2	24	1	23	187.6879	187.6876	8.75E-08
2032.3539	2	25	1	26	2227.6397	2	25	1	24	195.2858	195.2860	3.1E-08
2027.6500	2	26	1	27	2230.5270	2	26	1	25	202.8770	202.8769	1.79E-08
2022.9153	2	27	1	28	2233.3754	2	27	1	26	210.4601	210.4600	1.41E-08
											Σ=	5.46E-07

Call file CO_assign

Upper State Combination Differences (USCD)

. . .

Energy differences E(v,J) in the upper state: E(1,2)-E(1,0)=R(1)-P(1) E(1,3)-E(1,1)=R(2)-P(2)E(1,4)-E(1,2)=R(3)-P(3)

 $E(1,J+1)-E(1,J-1)=B_1[(J+1)(J+2)-(J-1)J] -D_1[(J+1)^2(J+2)^2-(J-1)^2J^2]=$ =R(J)-P(J)

From sufficient number of P i R transitions having common lower levels, the accurate values of B_1 i D_1 constants for the upper state can be determined using a linear regression.

USCD – example for ¹²C¹⁶O

Р	V'	J'	V"	J"	R	v'	J'	V"	J"	R-P(exp)	obl	(e-o)^2
2135.5473	2	1	1	2	2154.5967	2	3	1	2	19.0494	19.0494	1.27E-10
2131.6326	2	2	1	3	2158.3008	2	4	1	3	26.6682	26.6681	6.85E-09
2127.6832	2	3	1	4	2161.9694	2	5	1	4	34.2862	34.2858	1.45E-07
2123.6999	2	4	1	5	2165.6022	2	6	1	5	41.9023	41.9022	1E-08
2119.6819	2	5	1	6	2169.1991	2	7	1	6	49.5172	49.5170	5.41E-08
2115.6301	2	6	1	7	2172.7599	2	8	1	7	57.1298	57.1298	7.55E-10
2111.5442	2	7	1	8	2176.2846	2	9	1	8	64.7404	64.7405	7.57E-09
2107.4244	2	8	1	9	2179.7730	2	10	1	9	72.3486	72.3487	2.75E-09
2103.2709	2	9	1	10	2183.2249	2	11	1	10	79.9540	79.9540	9.24E-10
2099.0838	2	10	1	11	2186.6402	2	12	1	11	87.5564	87.5563	5.26E-09
2094.8635	2	11	1	12	2190.0188	2	13	1	12	95.1553	95.1553	2.48E-09
2090.6098	2	12	1	13	2193.3603	2	14	1	13	102.7505	102.7505	2.75E-11
2086.3231	2	13	1	14	2196.6648	2	15	1	14	110.3417	110.3418	9.82E-09
2082.0034	2	14	1	15	2199.9322	2	16	1	15	117.9288	117.9288	1.47E-09
2077.6508	2	15	1	16	2203.1620	2	17	1	16	125.5112	125.5113	1.68E-08
2073.2656	2	16	1	17	2206.3547	2	18	1	17	133.0891	133.0890	1.45E-08
2068.8479	2	17	1	18	2209.5094	2	19	1	18	140.6615	140.6615	2.85E-11
2064.3980	2	18	1	19	2212.6266	2	20	1	19	148.2286	148.2286	3.43E-10
2059.9158	2	19	1	20	2215.7057	2	21	1	20	155.7899	155.7899	2.17E-09
2055.4015	2	20	1	21	2218.7466	2	22	1	21	163.3451	163.3453	3.87E-08
2050.8552	2	21	1	22	2221.7494	2	23	1	22	170.8942	170.8943	1.91E-08
2046.2770	2	22	1	23	2224.7141	2	24	1	23	178.4371	178.4368	1.04E-07
2041.6677	2	23	1	24	2227.6397	2	25	1	24	185.9720	185.9723	1.04E-07
2037.0262	2	24	1	25	2230.5270	2	26	1	25	193.5008	193.5007	1.49E-08
2032.3539	2	25	1	26	2233.3754	2	27	1	26	201.0215	201.0216	2.61E-09
2027.6500	2	26	1	27	2236.1849	2	28	1	27	208.5349	208.5346	6.31E-08
2022.9153	2	27	1	28	2238.9549	2	29	1	28	216.0396	216.0397	6.02E-09
											_	

∑= 6.33E-07

B1= 1.905024 D1= 6.113E-06

The band centre v₀

The band centre:

$$v_0 = P(J) - E(1,J-1) + E(0,J)$$

 $v_0 = R(J) - E(1,J+1) + E(0,J)$

3

2

1

 $v_0 = P(J) - B_1(J-1)J+D_1 (J-1)^2J^2 + B_0J(J+1) - D_0 J^2 (J+1)^2$ $v_0 = R(J) - B_1(J+1)(J+2) + D_1 (J+1)^{2}(J+2)^2 + B_0J(J+1) - D_0$ $J^2 (J+1)^2$

The average of the calculated band centre for each line in the P and R branches.

v_0 - example for ¹²C¹⁶O

Р	V'	J'	V"	J"	nu	R	v'	J'	V"	J"	nu	
2135.547	32	1	1	2	2143.2722	2147.0823	3 2	1	1	0	2143.2723	
2131.632	26 2	2	1	3	2143.2721	2150.8571	2	2	1	1	2143.2722	
2127.683	32 2	3	1	4	2143.2719	2154.5967	2	3	1	2	2143.2722	
2123.699	92	4	1	5	2143.2722	2158.3008	3 2	4	1	3	2143.2722	
2119.681	92	5	1	6	2143.2720	2161.9694	2	5	1	4	2143.2723	
2115.630)1 2	6	1	7	2143.2722	2165.6022	2 2	6	1	5	2143.2723	
2111.544	2 2	7	1	8	2143.2722	2169.1991	2	7	1	6	2143.2722	
2107.424	4 2	8	1	9	2143.2722	2172.7599	2	8	1	7	2143.2722	
2103.270	92	9	1	10	2143.2722	2176.2846	52	9	1	8	2143.2722	
2099.083	88 2	10	1	11	2143.2721	2179.7730) 2	10	1	9	2143.2722	
2094.863	85 2	11	1	12	2143.2722	2183.2249	2	11	1	10	2143.2722	
2090.609	82	12	1	13	2143.2722	2186.6402	2 2	12	1	11	2143.2722	
2086.323	81 2	13	1	14	2143.2722	2190.0188	3 2	13	1	12	2143.2723	
2082.003	84 2	14	1	15	2143.2722	2193.3603	3 2	14	1	13	2143.2721	
2077.650	82	15	1	16	2143.2721	2196.6648	8 2	15	1	14	2143.2721	
2073.265	62	16	1	17	2143.2721	2199.9322	2 2	16	1	15	2143.2722	
2068.847	' 9 2	17	1	18	2143.2720	2203.1620) 2	17	1	16	2143.2720	
2064.398	30 2	18	1	19	2143.2722	2206.3547	2	18	1	17	2143.2722	
2059.915	82	19	1	20	2143.2722	2209.5094	2	19	1	18	2143.2720	
2055.401	52	20	1	21	2143.2723	2212.6266	52	20	1	19	2143.2722	
2050.855	52 2	21	1	22	2143.2722	2215.7057	2	21	1	20	2143.2722	
2046.277	02	22	1	23	2143.2720	2218.7466	52	22	1	21	2143.2721	
2041.667	72	23	1	24	2143.2724	2221.7494	2	23	1	22	2143.2721	
2037.026	62 2	24	1	25	2143.2721	2224.7141	2	24	1	23	2143.2724	
2032.353	89 2	25	1	26	2143.2723	2227.6397	2	25	1	24	2143.2721	
2027.650	0 2	26	1	27	2143.2721	2230.5270) 2	26	1	25	2143.2722	
2022.915	32	27	1	28	2143.2721	2233.3754	2	27	1	26	2143.2722	
						2236.1849	2	28	1	27	2143.2723	
www.	nlik					2238.9549	2	29	1	28	2143.2720	
vvvvola						22/11 6858	2	30	1	20	21/3 2710	

2241.6858 2

<u>assign</u>

30

1

29 2143.2719

B0= 1.922527 D0= 6.11E-06 B1= 1.905024 D1= 6.11E-06

nu= 2143.2722

The spectrum of ¹³C¹⁶O

96

The spectrum of ¹³C¹⁶O

Transmission $T = \frac{I}{I_0}$

 ${\sf I}\,$ – the intensity of light passing through the sample

 I_0 – the initial intensity of light

Absorbance
$$A = \log\left(\frac{1}{T}\right) = \log\left(\frac{I_0}{I}\right)$$

Absorbance determines, how much of the radiation was absorbed:

A=0no absorbance of the sampleT=1 $A=\infty$ total absorbance of the sampleT=0

Usually spectrometers use the transmission scale.

The IR spectrum of ¹³C¹⁶O

The analysis of the P and R branches of ¹³C¹⁶O leads to the following results:

 $B_0 = 1,837964 \text{ cm}^{-1}$ $B_1 = 1,821605 \text{ cm}^{-1}$ $D_0 = 5,575*10^{-6} \text{ cm}^{-1}$ $D_1 = 5,571*10^{-6} \text{ cm}^{-1}$

$$D_{0} = 5,575^{\circ}10^{-6} \text{ cm}^{-1}$$

$$D_{1} = 5,571^{\circ}10^{-6} \text{ cm}^{-1}$$

$$V_{0} = 2096,0680 \text{ cm}^{-1}$$
Reminder:
$$B = \frac{\hbar^{2}}{2\mu R^{2}} = \frac{\hbar^{2}}{2I}$$
Thus:
$$\frac{B_{0} \begin{bmatrix} 1^{2}C^{16}O \\ 1^{3}C^{16}O \end{bmatrix}}{B_{0} \begin{bmatrix} 1^{2}C^{16}O \\ 1^{3}C^{16}O \end{bmatrix}} = \frac{I_{0} \begin{bmatrix} 1^{3}C^{16}O \\ 1^{2}C^{16}O \end{bmatrix}}{\mu R_{0}^{2} \begin{bmatrix} 1^{3}C^{16}O \\ 1^{2}C^{16}O \end{bmatrix}} = \frac{\mu R_{0}^{2} \begin{bmatrix} 1^{3}C^{16}O \\ 1^{2}C^{16}O \end{bmatrix}}{\mu R_{0}^{2} \begin{bmatrix} 1^{2}C^{16}O \\ 1^{2}C^{16}O \end{bmatrix}} = \frac{1,046119}{\frac{12^{2}16}{12+16}} = 1,046119$$
The test:
$$\frac{B_{0} \begin{bmatrix} 1^{2}C^{16}O \\ B_{0} \end{bmatrix}}{R_{0} \begin{bmatrix} 1^{2}C^{16}O \\ 1^{3}C^{16}O \end{bmatrix}} = \frac{1,922527}{1,837964} = 1,046009$$

It is a proof that the weak band can be attributed to $^{13}C^{16}O$.

The intensity of rotational transitions

In the ground vibrational state

$$I_{rot} \approx \left| \vec{\mu} \right|^2 \left(2J + 1 \right) e^{-\frac{E_{rot}}{kT}}$$

The rovibrational transition from the ground vibrational state

$$I_{wib,rot} \approx \left(P_{v' \leftarrow v''}\right)^2 \left(2J + 1\right) e^{-\frac{E_{rot}}{kT}}$$

(2J+1) – degeneracy of the lower state
k = 1.380658E-23 J/deg (Boltzmana constant)
T – temperature in K

Determination of the rotational temperautre for ¹³C¹⁶O

P branch

J	E(J) I	nt_obl I	nt_exp_P	(e-o)^2
0	0	0.052421		
1	3.675905	0.154936	0.211749	0.003228
2	11.02758	0.250642	0.305692	0.00303
3	22.05476	0.335554	0.378366	0.001833
4	36.75704	0.406458	0.43172	0.000638
5	55.13389	0.461109	0.459239	3.5E-06
6	77.18464	0.498335	0.485285	0.00017
7	102.9085	0.518045	0.514058	1.59E-05
8	132.3045	0.521143	0.489271	0.001016
9	165.3716	0.509364	0.479119	0.000915
10	202.1085	0.485063	0.446468	0.00149
11	242.5141	0.450972	0.439332	0.000135
12	286.5867	0.409966	0.399873	0.000102
13	334.3247	0.364839	0.370603	3.32E-05
14	385.7265	0.318137		
15	440.7902	0.272024	0.294809	0.000519
16	499.5136	0.228215	0.259272	0.000965
17	561.8949	0.187949	0.224834	0.00136

Solver:

k=	6.95E-01cm-1/K
T=	354.81365K
kT=	246.60924cm-1
N=	0.0524209

